RSS

Coding & Robotics Summit – Johannesburg

13 Sep

Artificial Intelligence and the Fourth Industrial Revolution have become buzzwords in education, often used with little thought or understanding in slightly Pavlovian ways. There is a very real sense that big changes are afoot, and everyone is nervous about how to respond, and most particularly to be seen to be responding. I am not quite sure what to make of it, frankly. While it is clear that the working landscape will change as a result of AI, I am not convinced that much in the educational field changes … until it does. What do I mean? I think that it is already crystal clear that education should be looking to teach critical thinking, collaboration and creativity. I’m not sure that anything has changed around this. It is my belief that we should have as broad a curriculum as possible. Drama, History, Music should be as core to our curriculum as STEM. It makes no sense to me to de-emphasise or over-emphasise any field. So while I am all in favour of ensuring that coding & robotics forms part of the curriculum, I find the whole STEM, STEAM, and now STREAM (with robotics) debate counter-productive.

There will come a point, however, at which Machine Learning is powerful enough that meaningful AI applications are ready for classroom implementation. When Watson and Skinner built their teaching machines in the last century they imagined programmed learning which allowed for instant feedback and personalised learning paths, the kind of thing advocated by Pestalozzi back in the late 1700s with his one-on-one tutoring methodology. What emerged though, was the kind of drill and kill learning platforms that are the kiss of death for education. Computers are simply not intelligent enough to be able to spot when students are gaming them. However, AI does offer a possible resurrection of the idea with systems that are far more responsive and capable of analysing student production with sufficient nuance as to be useful. Real-time feedback loops enabled by devices which can read the learning brain, are not Science Fiction anymore. Nor are teaching machines which can sift the huge amount of data collected and make sense of it. There will undoubtedly, then, come a point at which AI teaching machines enter the classroom. In the lead up to that we can probably expect a range of apps that employ AI in some way, and answer particular pedagogical needs. As I get older, face and name recognition would be nice! But full-blown AI in the classroom is a little way off yet. Meaningful data analytics is probably much closer, but I’m not convinced having a wealth of data is always a good thing. I am also afraid that that data will be harvested for purposes unrelated to education. Imagine how you could Cambridge Analytica a population if you owned the data being collected on how everyone learns and thinks?

The focus of this one day conference was on Computational Thinking and on coding and robotics as a vehicle for teaching thinking skills, building the habits of mind and dispositions necessary for a post-singularity world. The South African government has recently announced that it will be introducing coding into the primary and GET phase (middle school) curricula. Karen Walstra opened affairs by walking through the history of Computational Thinking and its component parts, how coding concepts can be used across the curriculum and not just in coding classes. I am planning a blog article on Computational Thinking so I won’t dwell on it here. Her talk was vital in terms of introducing Computational Thinking, and in laying thinking skills as the foundation of any curriculum changes. However, what worries me is that an increased interest in coding has elevated it beyond what I think it is capable of providing. Computational Thinking, Coding & Robotics is not a magic bullet which will suddenly solve all education’s ills. It is a necessary skill to learn, a useful knowledge base, and a set of dispositions that all students need, but it should be seen as forming part of the thinking skills programme, not replacing the existing curriculum. All subjects and all skills are vital, in different ways. Don’t get me wrong, I am all in favour of coding’s place in the curriculum, but learning problem solving skills requires a broad world knowledge, and there are a number of thinking skills beyond the computational that are needed. Important, yes. A magic bullet, no.

St Enda’s Secondary School students designing a school website, circa 2003.

What her talk did highlight was the notion that all students can benefit from learning coding. The team from CodeJIKa presented a cogent case for this with their wonderful extra-curricular code club programme teaching students HTML, CSS and a little JavaScript. They have an online curriculum which runs largely through peer to peer learning. When I was teaching Computer Applications at St Enda’s Secondary School in the early 2000s I used the same approach. HTML & JavaScript are browser based and so do not need compilers and can be used offline – a huge consideration where Internet connection is a big problem. To my mind starting with a markup language is also helpful because it is easier to slip into, helping students get into the habit of moving between the concrete and the abstract. You can then start to slip JavaScript in quite organically and start introducing key programming concepts. Robyn Clark, from CodeJIKA, stressed how web design is also helpful in building entrepreneurial skills, giving students a side hustle. The CodeJIKA approach is to my mind a fairly easily replicable model across under-resourced schools. It is also flexible and stackable as App development, robotics and programming proper can be added as the skills and knowledge base increases. Amini Murinda from ORT South Africa presented what they have been doing in expanding coding and robotics in a growing number of schools. Both programmes clearly show that coding & robotics initiatives are engaging and transformative.

We heard from two speakers representing robotics companies, who spoke about where robotics and AI is headed, and why we should not fear job losses, and how investing in coding in primary schools could reduce failure rates in higher education. These talks provided a useful backdrop and a perspective from the world of work. I would have liked a greater emphasis on curriculum, but the summit was useful in bringing together participants from industry, teacher training and secondary and tertiary teaching sectors. It would have been great if Government had also been represented. We need many more of these discussions.

The big take-away for me was the need to take these pilot projects, together with the experience of primary and secondary teachers from the private sector who have been developing their own programmes, share best practice and work on a curriculum and pedagogies that make sense.

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

 
%d bloggers like this: